

## **DAAC/SMC Network Architecture**

#### **Mary Armstrong**

marmstro@eos.hitc.com

ECS Release A SDPS/CSMS Critical Design Review 17 August 1995

## Release A DAAC LANs: Generic Topology (LaRC)





### **DAAC LAN Network Architecture**



#### Central high-performance FDDI switch/router connecting multiple FDDI rings

#### **DAAC Subsystems supported by FDDI rings**

- Ingest, LSM, and PDPS have individual rings
- Data Server and CIDM share single ring
- Ingest and PDPS rings segregated from all user traffic

#### All hosts (servers, processors, and workstations) connected to FDDI

Printers connected to Ethernet

#### **EBnet External Interface provides connectivity to**

- EBnet for DAAC-DAAC and L0 ingest
- NSI and campus exchange LANs for user access
- EBnet ingest interface connects directly to Ingest ring (bypassing switch)

## **DAAC LAN Hardware**



#### **FDDI Switch/Router**

- Very high-performance, capable of handling all interfaces at full speed without degradation
- Both switching and routing on each port; each port gets full FDDI bandwidth (non-blocking)
- High redundancy and availability
- Highly scalable (up to at least 16 FDDI rings within single chassis; additional ports added via extra interface cards)
- Provides filtering at IP and TCP layer to control external access

FDDI rings implemented via Bay Networks System 2000 FDDI concentrators

- Servers and processors dual-homed to separate concentrators (provides complete redundancy)
- Workstations single-attached to one concentrator

Ethernet for printers connects to FDDI through Cabletron MicroMAC hub

## **GSFC Release A DAAC LAN**





## **MSFC Release A DAAC LAN**





## **EDC Release A DAAC LAN**





## **Design Advantages**



- 100 Mbps FDDI LANs provide plenty of capacity for Release A bandwidth needs
- Multiple FDDI LANs localize intra-subsystem traffic
- FDDI's inherent redundancy improves RMA
- FDDI switch/router provides network filtering to insure security to critical subsystems (such as Ingest)
- Scalable design allows additional rings to be created and additional hosts to be added without difficulty

# Migration Strategy for Release B and Beyond



Large increase in data flows during Release B

Other high-speed technologies being considered and prototyped

- ATM (155 and 622 Mbps)
- HiPPI (800 Mbps)

#### **Architecture migration**

- Provide high-speed "parallel" network to handle production flows
- Separate interfaces for DAAC-DAAC flows (through EBnet) and user flows (through NSI)
- Allows production flows to be segregated from user flows

## Possible Network Topology for Release B





## **SMC Network Architecture**





FDDI Cable
Ethernet Cable

### **SMC Network Architecture**



#### Consists of two FDDI rings

- One for Communications and Management Servers and workstations
- Second for Bulletin Board Server
  - provides increased security by isolating BBS
  - keeps "general public" access to BBS from impacting other hosts

#### FDDI implemented via physically wired rings

- Eliminates concentrator hardware and increases availability (no single point of failure)
- Viable because host count very low

#### **Workstations on Ethernet**

Connected to FDDI via Cabletron MicroMAC hub